Structured Prediction with Test-time Budget Constraints

نویسندگان

  • Tolga Bolukbasi
  • Kai-Wei Chang
  • Joseph Wang
  • Venkatesh Saligrama
چکیده

We study the problem of structured prediction under test-time budget constraints. We propose a novel approach applicable to a wide range of structured prediction problems in computer vision and natural language processing. Our approach seeks to adaptively generate computationally costly features during test-time in order to reduce the computational cost of prediction while maintaining prediction performance. We show that training the adaptive feature generation system can be reduced to a series of structured learning problems, resulting in efficient training using existing structured learning algorithms. This framework provides theoretical justification for several existing heuristic approaches found in literature. We evaluate our proposed adaptive system on two real-world structured prediction tasks, optical character recognition (OCR) and dependency parsing. For OCR our method cuts the feature acquisition time by half coming within a 1% margin of top accuracy. For dependency parsing we realize an overall runtime gain of 20% without significant loss in performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SpeedMachines: Anytime Structured Prediction

Structured prediction plays a central role in machine learning applications from computational biology to computer vision. These models require significantly more computation than unstructured models, and, in many applications, algorithms may need to make predictions within a computational budget or in an anytime fashion. In this work we propose an anytime technique for learning structured pred...

متن کامل

Embedding Inference for Structured Multilabel Prediction

A key bottleneck in structured output prediction is the need for inference during training and testing, usually requiring some form of dynamic programming. Rather than using approximate inference or tailoring a specialized inference method for a particular structure—standard responses to the scaling challenge— we propose to embed prediction constraints directly into the learned representation. ...

متن کامل

AskWorld: Budget-Sensitive Query Evaluation for Knowledge-on-Demand

Recently, several Web-scale knowledge harvesting systems have been built, each of which is competent at extracting information from certain types of data (e.g., unstructured text, structured tables on the web, etc.). In order to determine the response to a new query posed to such systems (e.g., is sugar a healthy food?), it is useful to integrate opinions from multiple systems. If a response is...

متن کامل

Budget Constraints in Prediction Markets

An automated market maker is a natural and common mechanism to subsidize information acquisition, revelation, and aggregation in a prediction market. The sought-after prediction aggregate is the equilibrium price. However, traders with budget constraints are restricted in their ability to impact the market price on their own. We give a detailed characterization of optimal trades in the presence...

متن کامل

A Household Daily Non-Mandatory Activity Participation and Duration Modeling Accounting for Person Level Budget Constraints

A HOUSEHOLD DAILY NON-MANDATORY ACTIVITY PARTICIPATION AND DURATION MODELING ACCOUNTING FOR PERSON LEVEL BUDGET CONSTRAINTS Ivana Vukovic Old Dominion University, 2017 Director: Dr. Rajesh Paleti A key methodological and behavioral innovative component in recent Activity-Based Models (ABMs) used for transportation planning is the household-level non-mandatory activity participation component. W...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1602.08761  شماره 

صفحات  -

تاریخ انتشار 2016